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ABSTRACT

NASHUA is a coupled finite clement/boundary element capability built around
NASTRAN for calculating the low frequency far-field acoustic pressure field radiated or
scattered by an arbitrary, submerged, three-dimensional, elastic structure subjected to either
internal time-harmonic mechanical loads or external time-harmonic incident loadings. This
paper describes the formulation and use of NASHUA for solving such structural acoustics
problems when the structure is fluid-filled. NASTRAN is used to generate the structural
finite element model and to perform most of the required matrix operations. Both fluid
domains are modeled using the boundary element capabililty in NASHUA, whosc matrix
formulation (and the associated NASTRAN DMAP) for evacuated structurcs can be used
with suitable interpretation of the matrix definitions. After computing surface pressures and
normal velocities, far-field pressures are evaluated using an asymptotic form of the
Helmholtz exterior integral equation. The proposed numecrical approach is validated by
comparing the acoustic field scattered tfrom a submerged fluid-filled spherical thin shell to
that obtained with a series solution, which is also derived in this paper.

INTRODUCTION

Two basic problems in computational structural acoustics are (1) the calculation of the
acoustic pressure field radiated by a general submerged three-dimensional clastic structure
subjected to internal time-harmonic loads, and (2) the calculation of the acoustic pressure
scattered by such a structure subjected to an incident time-harmonic wavetrain. The most
common, as well as the most accurate, approach for solving these problems at low
frequencies is to couple a finite element model of the structure with a boundary clement
model of the surrounding fluid. This is the approach taken by NASHUA, which is a
boundary element program built around NASTRAN, a widely-used finite element computer
program for structural dynamics.

Several previous papers (Ref. 1-4) described the basic formulation and development for
acoustic radiation and scattering from evacuated structures. lere we describe the
formulation and use of NASHUA for modeling submerged structures which are fluid-filled.
Internal fluid can occur because the structure is free-flooded or contains fluid-filled tanks. Tt
is possible to use existing NASTRAN capability to model the interior fluid with finite
elements (Ref. 5-7), but three-dimensional models with large numbers of fluid degrees of
frcedom might result. An attractive alternative to the fluid finite element model 1s to
represent the contained fluid using a boundary clement approach. In principle, any computer
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program capable of gencrating the appropriate boundary element matrices for an exterior
fluid is also capable of generating such matrices for the complementary region (the interior
region). NASTRAN’s versatility in user-controlled matrix operations (DMAP) makes the
implementation of such an approach straightforward.

THEORETICAL APPROACH

The basic theoretical development for NASHUA’s radiation and scattering approach
for evacuated structures has been presented in detail previously (Ref. 1-4). For
completeness, this paper summarizes that approach and describes the changes necessary to
model the interior fluid with boundary clements in the same procedure. There is no
requirement that the interior and exterior fluids be the same.

The Surface Solutiou for Evacuated Structures

Consider any submerged three-dimensional, evacuated clastic structure subjected to
either internal time-harmonic loads or an external time-harmonic incident wavetrain. If the
structure is modeled with finite elements using NASTRAN, the resulting matrix equation of
motion can be written as

Zv = F —GAp, (1)

where matrix Z (of dimension s x s) is the structural impedance, vector v (s x 1) is the
complex velocity amplitude for all structural DOF (wet and dry) using the coordinate systems
selected by the user, vector F (s x r) is the complex amplitude of the mechanical forces
applied to the structure, matrix G (s x f) is the rectangular transformation of direction
cosines to transform a vector of outward normal forces at the wet points to a vector of
forces at all points in the coordinate systems sclected by the user, matrix A (f x f) is the
diagonal area matrix for the wet surface, and vector p (f x r) is the complex amplitude of
total pressures (incident + scattered) applied at the wet grid points. In this equation, the
time dependence exp(iwt) has been suppressed. In the above dimensions, s denotes the total
number of independent structural DOF (wet and dry), f denotes the number of fluid DOI*
(wet points), and r denotes the number of load cases. In general, the surface areas, the
normals, and the transformation matrix G are obtained in NASHUA from the NASTRAN
calculation of the load vector resulting from an outwardly directly static unit pressure load on
the structure’s wet surlace.

In Eq. 1, the structural impedance matrix 7, which converts velocity to force, is given
by

7 = (—*M +iwB + K)/(iw), (2)
where M, B, and K are the structural mass, viscous damping, and stiffness matrices,
respectively, and w is the circular frequency of excitation. For structurcs with a nonzero loss
factor, K is complex. In addition, K can include the differential stilfness cffects of

hydrostatic pressure, if any (Ref. 3). A standard NASTRAN finite clement model of the
structure supplies the matrices K, M, and B.

For the exterior fluid domain, the total fluid pressurc p satisfies the Helmholtz
differential equation
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V?p +Kk?p = 0, 3)

where k = w/c is the acoustic wave number, and ¢ is the fluid sound speed. Equivalently, for
the exterior fluid, p is the solution of the Helmholtz integral equations (Ref. 8)

P(x)/2—p1, x on$
D(r) . , , om0,
[ p028as — [ qDEas = {p(x)—p, X inE, @
> on > —P1> x"inl,

where S, E, and I denote the surface, exterior, and interior domains, respectively, py is the
incident free-field pressure (if any), r is the distance from x to x’ (Fig. 1), D is the frce-space
Green’s function

D C—ikr s

(r) = A (5)

q == i —iwpvy, (6)
dn
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Fig. 1. Notation for Helmholtz Integral Equation

p 1s the fluid mass density, and v, is the outward normal velocity on S. As shown in Fig. 1, x
n Eq. 4 is the position vector for a typical point Pj on the surface S, x is the position vector
for the point P; on the surface or in the exterior field, the vector r = x’ - x, and n is the unit
outward normal at P;. We denote the lengths of the vectors x, x’, and r by x, x’, and r,
respectively. The normal derivative of the Green’s function D is (Ref. 1)

—ikr
8I?(r) - £ (ik + l) cos f, (7
an 4 r

where 3 is the angle between the normal n and the vector r, as shown in Fig. 1.

All three integral equations in Eq. 4 are needed for exterior fluids. The surface
equation provides the fluid impedance at the fluid-structure interface. Since the surface
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equation exhibits non-uniqueness at certain discrete characteristic frequencies (Ref. 9), the
intcrior equation is used to provide additional constraint equations which ensurc the required
uniqueness. The exterior equation is used to compute the exterior pressure field once the
surface solution (which includes the fluid pressure and its gradient) is known.

The substitution of Eqs. 6 and 7 into the surface cquation (4) yields

e—)kr

' —ikr
Pl;(—l —fg p(x) (ik +l) cos §dS = 1wp fs Vo (x) dS + p;, x'onS. (8
et s r .

c

4nr
This integral equation relates the total pressure p and normal velocity v, on S. If the
integrals in Iiq. 8 are discretized for numerical computation (Ref. 1), we obtain the matrix
equation (for the exterior fluid)

4rr

]'p - (‘Vn + Pr» 9)

where vector p (of dimension f x r) is the vector of complex amplitudes of the total pressure
on the structure’s wet surface, matrices E and C (both { x ) are fully-populated, complex,
nonsymmetric, and frequency-dependent, and vector py (f x r) is the complex amplitude of
the incident pressure vector. The number of unknowns in this system is £, the number of
wet points on the fluid-structure interface.

The normal velocities v, in Eq. 9 are related to the total velocities v by the same
rectangular transformation matrix G:

v, = GTv, (10)

where T denotes the matrix transpose. If velocitics v and v, are eliminated from Egs. 1, 9,
and 10, the resulting equation for the coupled fluid-structure system 1s

E+CG'Z'GA)p = CGYZ7'Y +py. (11)
P

This equation is solved for the total surface pressures p, since the rest of the equation
depends only on the geometry, the material properties, and the frequency. Since the two
right-hand side terms in Eq. 11 correspond to mechanical and incident loadings, only onc of
the two terms would ordinarily be present for a given casc. The details of the mcident
pressure vector py for scattering problems were presented previously (Ref. 2) and will not be
repeated here.

The velocity vector v for all structural DOF is recovered by solving Fq. 1 for v:
v = Z7'F —Z7'GAp. (12)

The surface normal velocity vector vy, is recovered by substituting this solution for v mnto Eq.

10.

Modeling Interior Fluid

The theoretical development presented in the preceding section can be modified shightly
to account also for an interior fluid. The wave equation, Fq. 3, applics also to interior {luids.
Although all threc integral cquations in Eq. 4 are gencrally nceded for exterior fluids, only
the surface equation is nceded to represent the surface impedance of interior fluids. Lq. 4a
also applies to interior fluids if the incident pressure py is set to zero, and the normal vector
n is negated. That is, the surface integral cquation applies to both exterior and interior fluids
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so long as the unit normal is always directed from the structure into the fluid. One other
consideration, perhaps unique to NASHUA, is that wet surface curvatures (which are
needed in the calculation of the "self” terms in matrix E) are negative at some interior points
(Ref. 1).

A matrix equation similar to Eq. (9) is therefore obtained for the interior fluid except
that the incident pressure py is zero. The fluid matrices E and C are different for exterior
and interior domains (even if the separating surface S has infinitesimal thickness) because
the normals are of opposite sign.

Two-Fluid Formulation

Denote the exterior fluid as Fluid 1 and the interior fluid as Fluid 2, and use the
subscripts 1 and 2 to refer to these two domains. Also define necw pressure and normal
velocity unknowns p and v, which include the solutions for both fluid domains:

p = {gi} Vo = {i:;}. (13)

Since there is no direct fluid coupling between the interior and exterior fluids, and the
incident pressure vanishes in the interior domain, Eqs. 1, 9, 10, and 11 apply also to the
two-fluid problem if the new definitions in Eq. 13 are used, and the matrices A, G, E. C,
and py are re-defined as

Al El

C
A=, G=[GIGZ], E=|"pl. ¢="¢l p1={p51}. (14)

The principle benefit of formulating the two-fluid problem in this way is that the required
modifications to extend the procedure to three or more independent fluid domains is now
clear.

The Far-Field Calculation

With the solution for the total pressures and velocities on the surface, the exterior
Helmbholtz integral equation, Eq. 4b, can be integrated to obtain the radiated (or scattered)
pressure at any desired location x’ in the exterior field. We first substitute Eqs. 5 - 7 into Eq.
4b to obtain

~—ikr
p(x) = [ [iwpvy(x) + (ik + l)p(x) cos f] =—dS, x'inE. (15)
S r 471
In applications, however, the field pressures generally of interest are in the far-ficld, so we

usc instead the asymptotic form of Eq. 15 (Ref. 1):

ike k¥

= j;' [peva(x) 4 p(x) cos fle* <52 dS, x"in E, x > d, (16)
X

p(x’) =

where d is a characteristic dimension of the structure, and « is the angle between the vectors
x and x’ (Fig. 1). For far-ficld points, cos #is computed using the asymptotic approximation
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cos B — n=; a7

For both Eqgs. 15 and 16, numerical quadrature is used.

OVERVIEW OF SOLUTION PROCEDURE

The NASHUA solution procedure uses NASTRAN to generate the matrices K, M, B,
and F and to generate sufficient geometry information so that the matrices E, C, G, A, and
p1 can be computed by a separate program called SURF. Then, NASTRAN DMAP is used
to form the matrices appearing in Eq. 11, which is solved for the total pressures p (in both
fluid domains) using the block solver OCSOLV (Ref. 10). Next, NASTRAN DMAP is used
to recover the surface normal velocities v, and the vector v of velocities at all structural
DOF (NASTRAN’s "g-set"). This step completes the surface solution. Then, with the total
pressures and velocities on the (exterior) surface, the asymptotic (far-ficld) form of the
Helmbholtz cxterior integral cquation 1s integrated in program FAROUT to compute the far-
field radiated pressures. Various tables and graphical displays are gencrated.

The overall setup of the solution procedurc is organized into four steps. In Step 1, a
separate NASTRAN structural model is prepared and run for each unique set of symmetry
constraints and each fluid region. Since, for general three-dimensional analysis, up to three
planes of reflective symmetry arc allowed, there would be one, two, four, or cight such runs
for each fluid region. Since the purposc of this step is to generate a file containing gcometry
information and a checkpoint file for subsequent use in the other steps, the only difference
between the two runs associated with a given symmetry case is the specification of the
outwardly directed unit pressure load which defines the wet surface for a given fluid region.

For each symmetry case and drive frequency, several programs are run sequentially to
form Step 2. For cach fluid region, the SURF program reads the geometry file generated by
NASTRAN in Step 1 and, using the Helmholtz surface and interior integral equations,
generates the fluid matrices iy, E,, C;, and C,, the area matrices A; and A,, the structure-
fluid transformation matrices G, and G,, the incident pressure vector pyy, and a geomeltry
file to be used later by the far-field integration program FAROUT in Step 3. In addition, a
partitioning vector is generated to facilitate the merging and partitioning of the various
matrices associated with the two fluid domains.

The two SURF jobs in Step 2 are followed by a NASTRAN job which takes the
structural matrices K, M, B, and F from Step 1 and the matrices generated by the SURF
jobs and forms the matrices in Eq. 11, where the definitions in Eq. 14 apply. LEq. 11 is then
solved for the total surface pressure vector p by program OCSOLV, which is a general out-
of-core block solver designed specifically for large, full, complex, nonsymmetric systems of
linear, algebraic equations. NASTRAN is then re-entered in Step 2 with p so that the
velocities v and v, can be reccovered using DMAP operations. The surface pressures,
normal velocities, and full g-set displacements are then reformatted, sorted, and merged into
a single file (for cach symmetry case) using program MERGE. Recall that there are one,
two, four, or eight possible symmetry cases.

Steps 1 and 2 are repeated for each symmetry case. After all symmetry cases have
been completed and merged, program FAROUT (Step 3) combines the symmetry cases and
mtcgrates over the surface. The far-field pressure solution is obtained by integrating the
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surface pressures and velocities using the asymptotic (far-field) form of the exterior
Helmbholtz integral cquation, Eq. 16. Output from FAROUT consists of both tables and files
suitable for various types of plotting.

The remaining steps in the NASHUA procedure are for graphical display. Deformed
structural plots of the frequency response are obtained by restarting NASTRAN (Step 4)
with the checkpoint file from Step 1 and a results file from FAROUT. In addition, animated
plots can be generated on the Evans & Sutherland PS-330 graphics terminal using the
CANDI program written for the DEC/VAX computer by R.R. Lipman of DTRC (Ref. 11).
X-Y plots of various quantities (both surface and far-field) versus frequency may be obtained
using IPLOT or other interactive plotting programs (Ref. 12). Polar plots of the far-field
sound pressure levels in cach of the three principal coordinate planes can also be generated
using the interactive graphics program FAFPLOT (Ref. 1).

DMAP ALTERS

Sceveral DMAP alters arc used n the overall NASHUA procedure to implement the
precedure described in preceding section. For Step 1, the following alter is used:

ALTER 1 $ NASHUA STEP 1, COSMIC 1988 RF8 (REVISED 12/7/89)

ALTER 2,2 $ DELETE PRECHK

ALTER 21,21 $ REPLACE GP3

GP3 GEOM3,EQEXIN,GEOM2/SLT,GPTT/S,N,NOGRAV/NEVER=1 §

ALTER 117,117 $ REPLACE FRRD

SSG1 SLT,BGPDT,CSTM,SIL,EST,MPT,GPTT,EDT,MGG,CASECC,DIT,/
PG,.,/LUSET/NSKIP $ PG

$SG2 USET,GM,YS,KFS,GO,DM,PG/QR,PO,PS,PL $ PL

OUTPUT2 AXIC,BGPDT,EQEXIN,USET,PG $

OUTPUT2 PL,CSTM,ECT,, $

OUTPUT2 o l-9$

PARAMR //*EQ*//C, Y, IISP=0./0.////NOHSP $

COND LBL4D,NOISP $ SKIP DIFF. STIFF. IF NO HYDRO. P

PARAMR //*COMPLEX//C,Y,I1SP=0./0./HSPC $ IISP+I*0

DIAGONAL  KAA/KDIAG/*SQUARE*/1.0 $

ADD KAA KDIAG/KAAD/(1.0,0.0)/(1.E-6,0.) $

RBMG2 KAAD/LLL $ FACTOR KAA

$SG3 L.LLL,KAAD,PL,LOO,KOO,PO/ULV,UOOV,RULV,RUOV/OMIT/
V,Y.IRES=-1/1/S,N,EPSI $ STATIC SOLUTION

SDR1 USET,PG,ULV,UOOV,YS,GO,GM,PS,KFS KSS,/UGV,PGG,QG/1/
*BK1.0* $ RECOVER DEPENDENT DISPLACEMENTS

TAI ECT.EPT,BGPDT,SIL,GPTT,CSTM/X1,X2,X3,ECPT,GPCT/LUSET/
NOSIMP/O/NOGENL/GENEL $ TABLES FOR DIFF. STIFF.

DSMG1 CASECC,GPTT,SIL,EDT,UGV,CSTM,MPT,ECPT,GPCT,DIT/KDGG/
S,N,DSCOSET $ DIFF. STIFF. MATRIX

EQUIV KDGG,KDNN/MPCF2 / MGG,MNN/MPCF2 $ EQUIV IF NO MPC’S

COND LBL1D,MPCF2 $ TRANSIER IF NO MPC’S

MCE2 USET,GM,KDGG,,,/KDNN,,, $ MPC’S ON DIFT. STIFF.

LABEL LBLID $

EQUIV KDNN,KDFF/SINGLE / MNN,MFF/SINGLE $ FQUIV. IF NO SPC’S

COND LBL2D,SINGLE $ TRANSFER 1F NO SPC’S
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SCE1 USET,KDNN,,,/KDFF,KDFS,KDSS,,, $ SPC’S AND DIFF. STIFF.

LABEL LBL2D §

EQUIV KDFF,KDAA/OMIT / MFF,MAA/OMIT $ EQUIV. IF NO OMITS

COND LBL3D,OMIT $ TRANSFER IF NO OMITS

SMP2 USET,GO,KDFF/KDAA $ OMITS AND DIFF. STIFF.

LABEL LBL3D $

PARAMR //*SUBC*////MHSPC//HSPC $ NEGATE HYDRO. P

ADD KDD,KDAA/NEWKDD/(1.0,0.0)/MHSPC $

ADD KFS,KDFS/NEWKFS/(1.0,0.0)/MHSPC $

EQUIV NEWKDD,KDD//NEWKFS,KFS $

LABEL LBL4AD § END OF DIFF. STIFF. EFFECTS (HSP)

DIAGONAL KDD/IDENT/*SQUARE*/0. $ D-SET IDENTITY

ADD IDENT,/IDM/(1.0,0.0) $ ANOTHER D-SET IDENTITY

ADD IDENT,/ZERO/(0.0,0.0) $ D-SET ZERO MATRIX

FRRD CASEXX,USETD,DLT,FRL,GMD,GOD,IDENT,ZERO,IDM,,DIT/
UDVF,PSF ,PDF,PPF/*DISP*/*DIRECT*/LUSETD/MPCF1/
SINGLE/OMIT/NONCUP/FRQSET $ PDF, KDD=I, BDD=0, MDD=i

CHKPNT MDD,KDD,BDD,PDI,PSF,PPF,EQDYN,USETD,GOD,GMD $

CHKPNT KFS,BGPDT,ECT,EQEXIN,GPECT,SIL $

EXIT $

ENDALTER $

The above alter does not depend on whether the fluid is interior or exterior to the structure.
The Step 2 alters, however, depend on whether an interior fluid is present. For Step 2A, the
following alter is used:

ALTER 1 $ NASHUA STEP 2A, COSMIC 1988 RF8 (REVISED 11/7/89)
ALTER 2,167 $ REPLACE ALL AFTER "BEGIN’ AND BEFORE ’ENIY’
INPUTT2 /DAT?2,,,,//13 $ INTERNAL FLUID

INPUTT2 /DAT,,,,//11 $ READ SURF MATRIX FROM UT1
MATPRN DAT,DAT2,,, $

PARAML DAT//*DMI*/1/8/RIGD $ GET RIGID FLAG

PARAMR //*EQ*//RIGD/0.////ELAST $ SET ELAST=-1 IF ELASTIC
COND LBLID,ELAST $ IF ELASTIC, JUMP OVER RIGID/SOFT
PARAMR //*EQ*//RIGD/2.//{//SOFT $ SET SOFT=-1 IF SOFT BD.
COND LBLYE,SOFT $ IF SOFT BOUNDARY, JUMP OVER RIGID
INPUTT2 /E,P1,VEKC,,//11 $ READ SURF MATRICES FROM UT1
OUTPUT?2 PLE,,, //-1 $ INPUTT2 FILE IS OVER-WRITTEN (UT1)
OUTPUT2 v2r» 11-9'$ EOF

CHKPNT DAT,VEKC $

EXIT $

LABEL LBLYE $ BEGINNING OF SOFT ANALYSIS

INPUTT2 /CT,PI,VEKC,,//11 $ READ SURF MATRICES FROM UTI
TRNSP CT/C $

ADD PI,/MPI/(-1.0,0.0) $ NEGATE PI

OUTPUT2 MPLC,,, /-1 $ INPUTT2 FILE IS OVER-WRITTEN (UT1)
OUTPUT?2 122> 11-9'$ EOF

CHKPNT DAT,VEKC $

EXIT $

LABEL LBLYD $ BEGINNING OF ELASTIC ANALYSIS

INPUTTS /G2,A2,,.//14 $ INTERNAL FLUID
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INPUTT? /C2T,E2,PI2, VEKC2,//13 $ INTERNAL FLUID

INPUTTS /G1,A1,,,//12 $ READ SURF MATRICES FROM UT2
INPUTT? /CIT,EL,PI1,VEKC,FVEC//11 $ READ SURF MATRICES
MATPRN FVEC,,,, $

MERGE Al,,,A2,FVEC,/A/-1$

MERGE El,, F2,FVEC,/E/-1 $

MERGE CIT,,,C2T,FVEC,/CT/-1 $

MERGE G1,,G2,,FVEC,/G/0 $

MERGE PI1,,,,,FVEC/PI/0 $

MATPRN VECM,VECS,,, $

PARAML DAT//*DMI*/1/2/FREQ $ GET FREQ FROM DAT
PARAMR //*COMPLEX*//FREQ/0./FREQC $ FREQ+I*0

PARAMR /I*MPYC*////W/FREQC/(6.283185,0.) $ OMEGA
PARAMR /IFMPYC*////IW/W/(0.,1.) $ *OMEGA

PARAMR /IFMPYC*////WW/W/W § OMEGA**2

PARAMR JI¥SUBCH*////MWW//WW $ -OMEGA**2

ADDS MDD,KDD,BDD,,/Y/MWW/(1.0,0.0)/IW $

MPYAD G,A,/GA/0$

DECOMP Y/1.,U/1//S,N,MINDIAG///S,N,SING $

FBS L,U,GA/YIGA/1 S

FBS L,U,PDF/YIF/1 $

ADD YIGA,/ZIGA/IW $

ADD YIF,/ZIF/TW $

MPYAD G.ZIGA,/GTZIGA/1 $

MPYAD CT,GTZIGA,L/11/1 $ LHS

MPYAD G,ZIF,/GTZIF/1 $

MPYAD CT,GTZIF,/Q/1 $ MECHANICAL RHS

MERGE DUM,,PDF,,VECM,/PDI'1/1 $ MERGE IN 0 COLUMNS
MERGE DUM, ,PSF,,VECM,/PSF1/1 $ MERGE IN 0 COLUMNS
MERGE DUM,,PPF, , VECM,/PPF1/1 $ MERGE IN 0 COLUMNS
EQUIV PDF1,PDF//PSF1,PSF//PPF1,PPF $

MERGE DUM,,Q,,VECM,/R1IS1/1 $ MERGE IN ZERO COLUMNS
MERGE DUM,,GTZIF, VECM,/GTZIFE/1 $ MERGE IN 0 COLUMNS
MERGE DUM,,PI,,VECS,/RIIS2/1 $ MERGE IN ZERO COLUMNS
ADD RIISI,RHS2/RHS $ ADD MECH. AND INC. RHS

EQUIV USETD,DUM1//GOD,DUM2//GMD,DUM3//KFS,DUM4 $
OUTPUT? RHS,H,,, /-1 $ INPUT'T2 FILE IS OVER-WRITTEN (UT1)
OUTPUT2 1vys 11:9°$ EOF

CHKPNT G171GA,GTZIFE,GA,PDF,L,U,PSE,DAT,VEKC,FVEC $
CIKPNT USETD,GOD,GMD,KFES $

ENDALTER §

The differences between this alter and once used for submerged cvacuated structures are due
to the need to read and combine two sets of SURFE matrices, one for each fluid domain. For
Step 2B, the following alter is used:

ALTER 1 $ NASHUA STEP 2B, COSMIC 1988 RF8 (REVISED 11/7/89)
ALTER 2,167 $ REPLACE ALL AFTER "BEGIN’ AND BEFORE END’
INPUTI2 /PC,,,,//11 $ READ PRESSURES FROM BLOCK SOLVER (UT1)
PARTN PC,,FVEC/PL,,,/0 $§ REMOVE INTERNAL FLUID DOF

PARTN P1,,VEKC/P,,,/0 $ REMOVE CHIEF DOF FROM P
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COND LBLYD,ELAST $ IF ELASTIC, JUMP OVER RIGID/SOFT

OUTPUT2 DAT,P,,, //-1 $ INPUTT?2 FILE IS OVER-WRITTEN (UT1)

OUTPUT2 vy, 119 $ EOF

MATPRN DAT,P,,, $ FOR SOFT BOUNDARY, P REPRESENTS VELOCITY

EXIT $

LABEL LBLOD $ ELASTIC ANALYSIS

MPYAD GTZIGA,PC,GTZIFE/VNC/0/-1 $ NORMAL VELOCITIES

MPYAD GA,PC,PDF/FA/0/-1 $ A-SET FORCES

FBS L,U,FA/UDVF/1 $ A-SET DISPLACEMENTS

SDRI USETD,,UDVE,,,GOD,GMD,PSF,KIS,,/UPVC,,QPC/1/
*DYNAMICS* $

PARTN VNC,,EVEC/V1,,,/0 $ REMOVE INTERNAL FLUID DOFE

PARTN V1,,VEKC/VN,,,/0 $ REMOVE CHIEF DOF FROM VN

OUTPUT2 DAT,P,VN,UPVC, //-1 $ INPUTT2 FILY: 1S OVER-WRITTTEN

OUTPUT? vess /79 $ EOF

MATPRN DAT,P,VN,, $

ENDALTER  §

This alter differs from one for evacuated structures because of the presence of several matrix
partitionings to remove the internal fluid DOF from the solution vectors before the solutions
are merged with the results for other frequencies.

NUMERICAL EXAMPLE

Here we illustrate and validate the two-fluid boundary element formulation developed
above by solving the problem of acoustic scattering from a submerged fluid-filled spherical
thin shell. The incident loading is a time-harmonic planar wavetrain, as shown in Iig. 2.
The specific problem solved has the following characteristics:

shell mean radius (a) 5m
shell thickness (h) 0.15 m
shell Young’s modulus (I2) | 2.07 x 10'' N/m*
shell Poisson’s ratio (v) 0.3

shell density (p;) 7669 kg/m*

shell loss factor () 0.01
fluid density (p) 1000 kg/m*
fluid sound speed (c¢) 1524 m/s

The same fluid is used for both the exterior and nterior fluid domains. The solution of this
problem exhibits rotational symmetry about the spherical axis parallel to the direction of
wave propagation. The benchmark solution to which the numerical results will be compared
1s a series solution, the derivation of which is summarized in the next section.

Series Solution

The series solution for scattering from a submerged cvacuated spherical thin shell was
presented by Junger and Feit (Ref. 13). Here we summarize that solution and mdicate the
modification necessary to include the addition of an interior fluid which fills the spherical
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Fig. 2. Plane Wave Scattering from a Fluid-Filled Spherical Shell
volume.

In general, the serics solution for plane wave scattering from a submerged, evacuated,
spherical thin shell involves computing the impedances of the shell and exterior fluid, the
scattered field due to rigid body effects, and the radiated ficld due to elastic (vibrational)
eftects. The shell impedance (the ratio of pressure to normal velocity) for the nth
axisymmetric shell mode is

Cipep b [P [P0
0 a  [P-(1+F) (N1
where p is the structural mass density, ¢, = VE/[p,(1-7)] , E is Young’s modulus, v is
Poisson’s ratio, 1= w'l/c 1s\/hs_d1mensxonless frequency, h is the shell thickness, a is the
shell mean radius, —h/(a 12), and \, =n(n+1). The quantities Q and QE,Z) are the

upper and lower shell resonance dimensionless frequencies, respectively. They are the
solutions of the characteristic equation

~ [143u40, = (1 —=—N2 =\, | (P
+ =21+ =402 -N5—A)=2(1—A)] = 0. (19)
The impedance of the exterior fluid, found by using the Green’s function and identity for the
exterior fluid, is
h,(ka)
2y = 1pC————, 20
7 = e (20)

where h,, 1s the Bessel’s function of the third kind of order n.

Zy

> (18)

Thus, Junger and Feit showed that the far-field scattered pressure is
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ie*Rp_  (2n+1)P,(cosh)
kR =~ h,(ka)

n=

.o pc
J n(ka)—— , ’ R>>a’ (21)
(Zn+2y)(ka)*h'y (ka)

p(R’H): -

where R is the distance to the field point, § is the angle from the z-axis, p, is the incident
pressure, P, is the Legendre polynomial of order n, and j, is the Bessel’s function of the first
kind of order n. The two terms in the bracketed expression correspond to rigid body and
radiated effects, respectively.

The above expression for the pressure scattered from an evacuated shell can be
extended to include the effects of the interior fluid merely by replacing the exterior fluid
impedance z, in Eq. 21 with the sum of the fluid impedances for the exterior and interior
fluids. It can be shown, by using the Green’s function and identity for the interior domain,
that the interior impedance, denoted ¢,, 1s given by

o pedal)
“ 7 (ka)

We note the rescmblance between Eqs. 20 and 22 for the exterior and interior domains,
respectively.

(22)

The computer program used to evaluate this series solution is a modification of a
program called SCATSPHERE written by F.M. Henderson, a retired employee of DTRC.
SCATSPHERE in turn is a variant of an earlier program called RADSPHERE (Ref. 14) for
computing the radiation from an internally-driven submerged spherical shell.

Numerical Solution

A NASTRAN finite element model of the spherical shell was prepared using 40
axisymmetric conical shell elements spanning the 180 degrees between the two poles of the
sphere. Due to the axisymmetry of the incident pressure loading, only the N = 0 harmonic
was required. Since all structural points are in contact with both interior and exterior fluids,
the resulting model therefore had 205 independent structural degrees of freedom (DOF) and
41 fluid DOF for each of the two fluid domains. System matrices for the exterior fluid were
also augmented by the addition of four constraint equations associated with interior Chief
points to ensure uniqueness of the integral representation at the upper frequencies. The
nondimensional frequency range 0<ka<5 was swept using a frequency increment of about ka
= (.05 with NASHUA and ka = 0.005 with the scries solution. Since the series solution is
converged, we treat it as an "exact” solution for this problem.

The comparison between the computed and exact solutions is presented is Iigs. 3 and
4, which plot the frequency response of the nondimensional scattered pressure pr/(poa),
where p is the far-field scattered pressure at distance r from the origin, p, 1s the incident
pressure, and a is the mean radius of the spherical shell. These two figures show very good
agreement between the two scattering solutions in the backward (¢ = 0) and forward (f = 180
degreces) directions. In fact, the computed and series solutions are virtually indistinguishable
from each other.
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Fig. 3. Forward Scattering from a Fluid-Filled Spherical Shell
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Fig. 4. Backward Scattering from a Fluid-Filled Spherical Shell
DISCUSSION

A very general computational capability has been described for predicting the sound
pressure field radiated or scattered by arbitrary, submerged, fluid-filled, three-dimensional
clastic structures subjected to  time-harmonic loads.  The structure is modeled with
NASTRAN (in all the generality that NASTRAN allows) in combination with boundary
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clement models of both interior and exterior fluid domains. Sufficient automation is
provided so that, for many structures of practical interest, an existing structural model can
be adapted for NASHUA acoustic analysis within a few hours.

One of the many benefits of having NASHUA linked with NASTRAN is the ability to

integrate the acoustic analysis of a structure with other dynamic analyses. Thus the same
finite element model can be used for modal analysis, frequency response analysis, linear
shock analysis, and underwater acoustic analysis. In addition, many of the pre- and
postprocessors developed for use with NASTRAN become available for NASHUA as well.
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